
GeneralClasses

GeneralClasses ii

COLLABORATORS

TITLE :

GeneralClasses

ACTION NAME DATE SIGNATURE

WRITTEN BY January 13, 2023

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

GeneralClasses iii

Contents

1 GeneralClasses 1

1.1 Descriptions of the Methods of the General classes: . 1

1.2 Pen Class: . 2

1.3 FormPen Class: . 5

1.4 SavePen Class: . 5

1.5 ShowPen Class: . 5

1.6 Form Class: . 6

1.7 Object Class: . 9

1.8 UndefinedObject Class: . 11

1.9 Symbol Class: . 11

1.10 Boolean Class: . 12

1.11 True Class: . 13

1.12 False Class: . 13

1.13 Magnitude Class: . 14

1.14 Char Class: . 15

1.15 Number Class: . 16

1.16 Integer Class: . 18

1.17 LongInteger Class: . 21

1.18 Float Class: . 22

1.19 Radian Class: . 24

1.20 Point Class: . 25

1.21 Random Class: . 26

1.22 Collection Class: . 27

1.23 Bags & Sets Classes: . 30

1.24 KeyedCollection Class: . 31

1.25 Dictionary Class: . 33

1.26 AmigaTalk Class: . 34

1.27 SequenceableCollection Class: . 38

1.28 Interval Class: . 40

1.29 LinkedList Class: . 42

GeneralClasses iv

1.30 Semaphore Class: . 43

1.31 File Class: . 44

1.32 ArrayedCollection Class: . 45

1.33 Array Class: . 46

1.34 ByteArray Class: . 47

1.35 String Class: . 47

1.36 Block Class: . 49

1.37 Class Class: . 51

1.38 Process Class: . 52

GeneralClasses 1 / 53

Chapter 1

GeneralClasses

1.1 Descriptions of the Methods of the General classes:

WARNING: The documentation in this file is from the Original Little

SmallTalk documentation. If there is any question of whether

these documents are correct, you should check the corresponding

source file in AmigaTalk:General/ directory in order

to determine what is currently implemented.

Show below is the hierarchy of the General Classes that are loaded

into memory before the AmigaTalk system is ready for user input.

The indentations indicate which classes are sub-classes:

Object

UndefinedObject

Symbol

Boolean

True

False

Magnitude

Char

Number

Integer

Float

LongInteger

Radian

Point

Random

Collection

Bag

GeneralClasses 2 / 53

Set

KeyedCollection

Dictionary

AmigaTalk

File

SequenceableCollection

Interval

LinkedList

Semaphore

Form -- Do NOT use!

Pen

ArrayedCollection

Array

ByteArray

String

Block

Class

Process

1.2 Pen Class:

The class Pen is a class that opens a Window for performing simple

graphics commands in. This class has been re-written & is completely

different from the intentions of the Little SmallTalk author, Tim Budd.

Instead of using a plotting device (How many of those are there for the

Amiga?), this class simply opens a Window that can be used to see the

results of the Pen methods.

NOTE: There’s a limit of 20 for how many Plot Windows can be open

at the same time. AmigaTalk will tell you via Requesters when

this limit is violated.

Responds to

new

make a new instance of class Pen, initializing the

instance variables (default title: ’Unknown Plot’).

new: newPlotTitle

make a new instance of class Pen, initializing the

instance variables & using the supplied newPlotTitle as

the Plot Window title.

openPlotEnv: sizePoint

GeneralClasses 3 / 53

Open the Plot Window with the given size (sizePoint is of class Point ,

so (sizePoint x) is the width, & (sizePoint y) is the height of the

Plot Window).

WARNING: You can only open a Plot Window as big as the AmigaTalk screen

(default 640 by 480).

closePlotEnv: whichPlotTitle

Close the Plot Window with the given title.

movePlotEnvBy: deltaPoint

Move the Plot Window by the given deltaPoint amounts (deltaPoint is

of class Point , so (deltaPoint x) is x movement,

& (deltaPoint y) is y movement of the Plot Window.

WARNING: There is no bounds checking for this, so make sure you keep

the Plot Window visible!

setLineType: bitPattern

Change the type of the line to plot with to the given bitPattern value.

(example: 2r11110000111100001111000011110000 = 16rF0F0F0F0 will draw

a dashed line). This is equivalent to SetDrPt() in graphics.library.

drawText: text at: startPoint

Place the given text at the given starting point using the current

pen colors.

WARNING: There is no bounds checking for this, so make sure you keep

the text inside the Plot Window!

drawBox: fromPoint to: endPoint

Draw a box (fromPoint x) @ (fromPoint y)

to (endPoint x) @ (endPoint y). This is different from the

graphics.library DrawBox() call in that the endPoint is NOT interpreted

to be the width & height of the box. If you want to use the second

point as width @ height, simply add this:

endPoint x <- fromPoint x + endPoint x.

endPoint y <- fromPoint y + endPoint y.

WARNING: There is no bounds checking for this, so make sure you keep

inside the Plot Window!

drawCircleAt: centerPoint radius: r

Draw a circle at the given centerPoint with the given radius using

the current pen colors.

WARNING: There is no bounds checking for this, so make sure you keep

inside the Plot Window!

circleRadius: radius

Draw a circle at the current location, with the given radius using

GeneralClasses 4 / 53

the current pen colors.

WARNING: There is no bounds checking for this, so make sure you keep

inside the Plot Window!

drawTo: endPoint

Draw a line from the current location to the given endPoint using the

current pen colors.

WARNING: There is no bounds checking for this, so make sure you keep

inside the Plot Window!

goTo: aPoint

Move the drawing point to the given aPoint.

WARNING: There is no bounds checking for this, so make sure you keep

inside the Plot Window!

drawLine: fromPoint to: endPoint

Draw a line fromPoint to endPoint using the current pen colors.

WARNING: There is no bounds checking for this, so make sure you keep

inside the Plot Window!

drawPoint: atPoint

Draw a pixel atPoint using the current pen colors.

WARNING: There is no bounds checking for this, so make sure you keep

inside the Plot Window!

direction

This method returns a Radian value, indicating the current direction

that the Pen will go with the go: method.

direction: radianAngle

Set the direction that the Pen will go with the go: method.

erase

Fill the Plot Window with the background color & erase all Plotting.

extent

Return a Point that indicates the width @ height of the Plot Window.

location

Return a Point that indicates the x @ y of the

plotter’s location.

center

Move the current plotting location to the center of the Plot Window.

tellPens

Return a Point that indicates the fpen @ bpen

of the Plot Window.

setPens: penSet

Change the fpen @ bpen values to (penSet x) @ (penSet y) respectively.

GeneralClasses 5 / 53

go: anAmount

Move the plotting location anAmount in the current direction.

anAmount is a scalar value (Integer or Float).

turn: addedAngle

Change the current direction by the given addedAngle (in Radians).

titleIs

Return a String that corresponds to the title of the plot window.

SEE ALSO FormPen , SavePen , ShowPen

1.3 FormPen Class:

The class FormPen is a sub-class of Pen that allows the User

to put together a collection (actually a Bag) of lines.

Responds to

new

Initialize the FormPen class instance.

add: startingPoint to: endPoint

Add a line with the given points to the instance.

with: aPen displayAt: location

Draw all the lines contained in the FormPen using the given aPen.

aPen is of class Pen .

1.4 SavePen Class:

The class SavePen is a sub-class of FormPen that allows the User

to save a drawing made by a Pen. What the original author of

this class means by save isn’t quite clear.

Responds to

setForm: aForm

Initialize the instance variable with aForm of class Form .

goTo: aPoint

Add a line from the current location to aPoint of class Point

to aForm.

1.5 ShowPen Class:

The class ShowPen is a sub-class of Pen that allows the User

to see some fancy uses of the Pen class.

Responds to

GeneralClasses 6 / 53

withPen: aPen

Initialize the instance variable(s) (aPen is of class Pen .

poly: nSides length: length

Draw a ploygon with the given number of sides each with the given

length.

WARNING: There is no bounds checking for this, so make sure you keep

inside the Plot Window! Also, there is no such thing as a

ploygon with less than 3 sides, but this method doesn’t

perform any check for this!

spiral: n angle: a

Draw a spiral with the given number of segments (which is also the

length of the segments), changing the direction angle by a Radians .

WARNING: There is no bounds checking for this, so make sure you keep

inside the Plot Window!

1.6 Form Class:

The class Form is a sub-class of Object that allows the

User to draw figures using ASCII text. This class is NOT ported to

the graphic capabilities of the Amiga, so don’t expect to get any useful

pictures with it. I’ve just left the Smalltalk code as descriptions

of what the methods actually do. Use class Pen or the Curses

primitives (in AmigaTalk:User/Curses.st) for drawing simple

pictures instead.

Responds to

new

Initialize the instance of Form.

clipFrom: upperLeft to: lowerRight

"You figure it out:"

! newForm newRow rsize left top rText !

left <- upperLeft y - 1. " left hand side"

top <- upperLeft x - 1.

rsize <- lowerRight y - left.

newForm <- Form new.

(upperLeft x to: lowerRight x)

do: [:i |

newRow <- String new: rsize.

rText <- self row: i.

(1 to: rsize)

GeneralClasses 7 / 53

do: [:j |

newRow at: j

put: (rText at: (left + j)

ifAbsent: [$])

].

newForm row: (i - top) put: newRow

].

ˆ newForm

columns

ˆ text inject: 0 into: [:x :y | x max: y size]

display

smalltalk clearScreen.

self printAt: 1 @ 1.

’ ’ printAt: 20 @ 0

eraseAt: aPoint ! location !

location <- aPoint copy.

text do: [:x | (String new: (x size)) printAt: location.

location x: (location x + 1)]

extent

ˆ self rows @ self columns

first

ˆ text first

next

ˆ text next

overLayForm: sourceForm at: startingPoint

! newRowNum rowText left rowSize !

newRowNum <- startingPoint x.

left <- startingPoint y - 1.

sourceForm do: [:sourceRow |

rowText <- self row: newRowNum.

rowSize <- sourceRow size.

rowText <- rowText padTo: (left + rowSize).

(1 to: rowSize) do: [:i |

((sourceRow at: i) ~= $)

ifTrue: [rowText at: (left + i)

put: (sourceRow at: i)]].

self row: newRowNum put: rowText.

newRowNum <- newRowNum + 1]

placeForm: sourceForm at: startingPoint

GeneralClasses 8 / 53

! newRowNum rowText left rowSize !

newRowNum <- startingPoint x.

left <- startingPoint y - 1.

sourceForm do: [:sourceRow |

rowText <- self row: newRowNum.

rowSize <- sourceRow size.

rowText <- rowText padTo: (left + rowSize).

(1 to: rowSize) do: [:i |

rowText at: (left + i)

put: (sourceRow at: i)].

self row: newRowNum put: rowText.

newRowNum <- newRowNum + 1]

reversed ! newForm columns newRow !

columns <- self columns.

newForm <- Form new.

(1 to: self rows) do: [:i |

newRow <- text at: i.

newRow <- newRow ,

(String new: (columns - newRow size)).

newForm row: i put: newRow reversed].

ˆ newForm

rotated ! newForm rows newRow !

rows <- self rows.

newForm <- Form new.

(1 to: self columns) do: [:i |

newRow <- String new: rows.

(1 to: rows) do: [:j |

newRow at: ((rows - j) + 1)

put: ((text at: j)

at: i ifAbsent: [$])].

newForm row: i put: newRow].

ˆ newForm

row: index

ˆ text at: index ifAbsent: [”]

row: index put: aString

(index > text size)

ifTrue: [[text size < index] whileTrue:

[text <- text grow: ”]].

text at: index put: aString

GeneralClasses 9 / 53

rows

ˆ text size

printAt: aPoint ! location !

location <- aPoint copy.

text do: [:x | x printAt: location.

location x: ((location x) + 1)]

1.7 Object Class:

The class Object is a superclass of all classes in the system, and is

used to provide a consistent basic functionality and default behavior.

Many methods in class Object are overridden in subclasses.

Responds to

== or =

Return true if receiver and argument are the same object, false

otherwise.

~~ or ~=

Inverse of ==.

asString

Return a string representation of the receiver, by default this is the

same as printString, although one or the other is redefined

in many subclasses.

asSymbol

Return a symbol representing the receiver.

class

Return object representing the class of the receiver.

copy

Return shallowCopy of receiver. Many subclasses redefine shallowCopy.

deepCopy

Return the receiver. This method is redefined in many subclasses.

do: aBlock

The argument must be a one argument block. Execute the block on every

element of the receiver collection. Elements in the receiver col-

lection are listed using first and next, so the default

behavior is merely to execute the block using the receiver as argument.

error: errMsg

Argument must be a String. Print argument string as error message.

Return nil.

first

GeneralClasses 10 / 53

Return first item in sequence, which is by default simply the receiver.

See next, below.

isKindOf: className

Argument must be a Class. Return true if class of receiver, or any

superclass thereof, is the same as argument.

isMemberOf: className

Argument must be a Class. Return true if receiver is instance of

argument class.

isNil

Test whether receiver is object nil.

next

Return next item in sequence, which is by default nil. This

message is redefined in classes which represent sequences, such as

Array or Dictionary.

notNil

Test if receiver is not object nil.

print

Display print image of receiver on the Status Window.

printString

Return a string representation of receiver. Objects which do not re-

define printString, and which therefore do not have a printable

representation, return their class name as a string.

respondsTo: msgSymbol

Argument must be a symbol. Return true if receiver will respond to

the indicated message.

shallowCopy

Return the receiver. This method is redefined in many subclasses.

subclassResponsibility: methodString

Inform the user that a subclass did NOT implement the given method.

notImplemented: methodString

Inform the user that the given method is NOT implemented.

doesNotUnderstand: methodString

Inform the user that a subclass does NOT understand the given method.

shouldNotImplement: methodString

Inform the user that a subclass should NOT implement the given method.

Examples: Printed result:

7 ~~ 7.0 True

7 asSymbol #7

7 class Integer

GeneralClasses 11 / 53

7 copy 7

7 isKindOf: Number True

7 isMemberOf: Number False

7 isNil False

7 respondsTo: #+ True

1.8 UndefinedObject Class:

The pseudo variable nil is an instance (usually the only instance)

of the class UndefinedObject. nil is used to represent undefined

values, and is also typically returned in error situations. nil is also

used as a terminator in sequences, as for example in response to the

message next when there are no further elements in a sequence.

Responds to

isNil

Overrides method found in Object. Return true.

notNil

Overrides method found in Object. Return false.

printString

Return ’nil’.

Examples: Printed result:

nil isNil True

1.9 Symbol Class:

Instances of the class Symbol are created either by their literal

representation, which is a pound sign followed by a string of nonspace

characters (for example #aSymbol), or by the message asSymbol being

passed to an object. Symbols cannot be created using new. Symbols

are guaranteed to have unique representations; that is, two symbols

representing the same characters will always test equal to each other.

Inside of literal arrays, the leading pound signs on symbols can be

eliminated, for example: #(these are symbols).

Responds to

==

Return true if the two symbols represent the same characters, false

otherwise.

asString

Return a String representation of the symbol without the

GeneralClasses 12 / 53

leading pound sign.

printString

Return a String representation of the symbol, including the

leading pound sign.

Examples: Printed result:

#abc == #abc True

#abc == #ABC False

#abc ~~ #ABC True

#abc printString #abc

’abc’ asSymbol #abc

1.10 Boolean Class:

The class Boolean provides protocol for manipulating true and false

values. The pseudo-variables true and false are instances of the

subclasses of Boolean; True and False, respectively. The subclasses

True and False, in combination with blocks, are used to implement con-

ditional control structures. Note, however, that the bytecodes may

optimize conditional tests by generating code in-line, rather than using

message passing. Note that bit-wise boolean operations are provided by

class Integer.

Responds To

&

The argument must be a boolean. Return the logical conjunction (and)

of the two values.

|

The argument must be a boolean. Return the logical disjunction (or)

of the two values.

and: aBlock

The argument must be a block. Return the logical conjunction (and)

of the two values. If the receiver is false the second argument

is not used, otherwise the result is the value yielded in evaluating

the argument block.

or: aBlock

The argument must be a block. Return the logical disjunction (or)

of the two values. If the receiver is true the second argument

is not used, otherwise the result is the value yielded in evaluating

the argument block.

eqv: aBoolean

GeneralClasses 13 / 53

The argument must be a boolean. Return the logical equivalence (eqv)

of the two values.

xor: aBoolean

The argument must be a boolean. Return the logical exclusive or

(xor) of the two values.

Examples: Printed result:

(1 > 3) & (2 < 4) False

(1 > 3) | (2 < 4) True

(1 > 3) and: [2 < 4] False

1.11 True Class:

The pseudo-variable true is an instance (usually the only instance) of

the class True.

Responds To

ifTrue: trueAlternativeBlock

Return the result of evaluating the argument block.

ifFalse: falseAlternativeBlock

Return nil.

ifTrue: trueAlternativeBlock ifFalse: falseAlternativeBlock

Return the result of evaluating the first argument block.

ifFalse: falseAlternativeBlock ifTrue: trueAlternativeBlock

Return the result of evaluating the second argument block.

not

Return false.

Examples: Printed result:

(3 < 5) not False

(3 < 5) ifTrue: [17] 17

1.12 False Class:

The pseudo-variable false is an instance (usually the only instance) of

the class False.

Responds To

ifTrue: trueAlternativeBlock

Return nil.

ifFalse: falseAlternativeBlock

Return the result of evaluating the argument block.

ifTrue: trueAlternativeBlock ifFalse: falseAlternativeBlock

GeneralClasses 14 / 53

Return the result of evaluating the second argument block.

ifFalse: falseAlternativeBlock ifTrue: trueAlternativeBlock

Return the result of evaluating the first argument block.

not

Return true.

Examples: Printed result:

(1 < 3) ifTrue: [17] 17

(1 < 3) ifFalse: [17] nil

1.13 Magnitude Class:

The class Magnitude provides protocol for those subclasses possessing

a linear ordering. For the sake of efficiency, most subclasses redefine

some or all of the relational messages. All methods are defined in

terms of the basic messages <, = and >, which are in turn defined circu-

larly in terms of each other. Thus each subclass of Magnitude must

redefine at least one of these messages.

Responds To

<

Relational less than test. Returns a boolean.

<=

Relational less than or equal test.

=

Relational equal test. Note that this differs from ==,

which is an object equality test.

~=

Relational not equal test, opposite of =.

>=

Relational greater than or equal test.

>

Relational greater than test.

between: low and: high

Relational test for inclusion.

max: arg

Return the maximum of the receiver and argument value.

min: arg

Return the minimum of the receiver and argument value.

Examples: Printed result:

$A max: $a $a

4 between: 3.1 and: (17/3) True

GeneralClasses 15 / 53

1.14 Char Class:

This class defines protocol for objects with character values.

Characters possess an ordering given by the underlying representation,

however arithmetic is not defined for character values. Characters are

written literally by preceding the character desired with a dollar sign,

for example: $a $B $$.

Responds To

==

Object equality test. Two instances of the same character always

test equal.

asciiValue

Return an Integer representing the ASCII value of the receiver.

asLowercase

If the receiver is an uppercase letter returns the same letter in

lowercase, otherwise returns the receiver.

asUppercase

If the receiver is a lowercase letter returns the same letter in

uppercase, otherwise returns the receiver.

asString

Return a length one string containing the receiver. Does not contain

leading dollar sign, compare to printString.

digitValue

If the receiver represents a number (for example $9) return

the digit value of the number. If the receiver is an uppercase

letter (for example $B) return the position of the number in

the uppercase letters + 10, ($B returns 11, for example). If

the receiver is neither a digit nor an uppercase letter an error is

given and nil returned.

isAlphaNumeric

Respond true if receiver is either digit or letter, false otherwise.

isDigit

Respond true if receiver is a digit, false otherwise.

isLetter

Respond true if receiver is a letter, false otherwise.

isLowercase

Respond true if receiver is a lowercase letter, false otherwise.

isSeparator

Respond true if receiver is a space, tab or newline, false otherwise.

GeneralClasses 16 / 53

isUppercase

Respond true if receiver is an uppercase letter, false otherwise.

isVowel

Respond true if receiver is $a, $e, $i, $o or $u, in either upper or

lower case.

printString

Respond with a string representation of the character value. Includes

leading dollar sign, compare to asString, which does not

include $.

Examples: Printed result:

$A < $0 False

$A asciiValue 65

$A asString A

$A printString $A

$A isVowel True

$A digitValue 10

1.15 Number Class:

The class Number is an abstract superclass for Integer and Float.

Instances of Number cannot be created directly. Relational messages

and many arithmetic messages are redefined in each subclass for arguments

of the appropriate type. In general, an error message is given and nil

returned for illegal arguments.

Responds To

maxtype: aNumber

Return the receiver if the receiver has greater generality than the

argument, otherwise return the argument coerced into being the same

type as the receiver.

= aNumber

Compare the Receiver with the argument, return true if they are the

same type, false otherwise.

< aNumber

Return true if the Receiver has less generality than the argument,

false otherwise.

> aNumber

Return true if the Receiver has greater generality than the argument,

false otherwise.

+ aNumber

GeneralClasses 17 / 53

Mixed type addition.

- aNumber

Mixed type subtraction.

* aNumber

Mixed type multiplication

/ aNumber

Mixed type division.

ˆ aNumber

Exponentiation, same as raisedTo:.

@ aNumber

Construct a point with coordinates being the receiver and the argument.

abs

Absolute value of the receiver.

exp

e raised to the power represented by the receiver.

gamma

Return the gamma function (generalized factorial) evaluated at the

receiver.

ln

Natural logarithm of the receiver.

log: aNumber

Logarithm in the given base.

negated

The arithmetic inverse of the receiver.

negative

True if the receiver is negative.

pi

Return the approximate value of the receiver multiplied by (3.1415926).

positive

True if the receiver is positive (>= 0).

radians

Argument converted into radians.

raisedTo: aNumber

The receiver raised to the argument value.

reciprocal

The arithmetic reciprocal of the receiver.

roundTo: aNumber

The receiver rounded to units of the argument (see the source in

AmigaTalk:General/Number.st).

GeneralClasses 18 / 53

sign

Return -1, 0 or 1 depending upon whether the receiver is negative,

zero or positive, respectively.

sqrt

Square root. nil if receiver is less than zero.

squared

Return the receiver multiplied by itself.

strictlyPositive

True if the receiver is greater than zero.

to: highValue

Interval from Receiver to argument value (highValue) with step of 1.

to: highValue by: stepSize

Interval from Receiver to argument (highValue) in given steps.

truncatedTo: aNumber

The receiver truncated to units of the argument. (see the source in

AmigaTalk:General/Number.st).

Examples: Printed result:

3 < 4.1 True

3 + 4.1 7.1

3.14159 exp 23.1406

9 gamma 40320

5 reciprocal 0.2

0.5 radians 0.5 radians

13 roundTo: 5 15

13 truncateTo: 5 10

1.16 Integer Class:

The class Integer provides protocol for objects with integer values.

Responds To

= aNumber

Return true if the Receiver & the argument are equal, false otherwise.

> aNumber

Return true if the Receiver is greater than the argument, false

otherwise.

< aNumber

Return true if the Receiver is less than the argument, false otherwise.

+ aNumber

Return the sum of the Receiver & the argument.

GeneralClasses 19 / 53

- aNumber

Return the difference between the Receiver & the argument.

* aNumber

Return the product of the Receiver & the argument.

/ aNumber

Return the quotient of the Receiver & the argument.

// aNumber

Integer quotient, truncated towards negative infinity (compare to

quo:).

intNegRem: aNumber

Integer remainder, truncated towards negative infinity (compare to

rem:).

allMask: anInteger

Argument must be Integer. Treating receiver and argument as

bit strings, return true if all bits with 1 value in argument

correspond to bits with 1 values in the receiver.

anyMask: anInteger

Argument must be Integer. Treating receiver and argument as

bit strings, return true if any bit with 1 value in argument corres-

ponds to a bit with 1 value in the receiver.

asCharacter

Return the Char with the same underlying ASCII representation as the

low order eight bits of the receiver.

asFloat

Return a floating point value with same magnitude as receiver.

asHex

Return the Receiver as a HexaDecimal String .

asBinary

Return the Receiver as a binary String .

asOctal

Return the Receiver as an octal String .

bitAnd: anInteger

Argument must be Integer. Treating the receiver and argument

as bit strings, return logical and of values.

bitAt: anInteger

Argument must be Integer greater than 0 and less than under-

lying word size. Treating receiver as a bit string, return the bit

value at the given position, numbering from low order (or rightmost)

position.

GeneralClasses 20 / 53

bitInvert

Return the receiver with all bit positions inverted.

bitOr: anInteger

Return logical or of values.

bitShift: anInteger

Treating the receiver as a bit string, shift bit values by amount

indicated in argument. Negative values shift right, positive left.

bitXor: anInteger

Return logical xor of values.

even

Return true if receiver is even, false otherwise.

factorial

Return the factorial of the receiver. Return is a Float for large

numbers.

gcd: anInteger

Argument must be Integer. Return the greatest common divisor

of the receiver and argument.

highBit

Return the location of the highest 1 bit in the receiver. Return

nil if the Receiver is zero.

lcm: anInteger

Argument must be Integer. Return least common multiple of

receiver and argument.

noMask: anInteger

Argument must be Integer. Treating receiver and argument as bit

strings, return true if no 1 bit in the argument corresponds to a 1

bit in the receiver.

odd

Return true if receiver is odd, false otherwise.

quo: anInteger

Return quotient of Receiver divided by argument.

radix: aNumber

Return a string representation of the receiver value, printed in the

base represented by the argument. Argument value must be <= 36

and >= to 2.

rem: anInteger

Remainder after receiver is divided by argument value.

timesRepeat: aBlock

Repeat argument block the number of times given by the receiver.

GeneralClasses 21 / 53

Examples: Printed result:

5 + 4 7

5 allMask: 4 True

4 allMask: 5 False

5 anyMask: 4 True

5 bitAnd: 3 1

5 bitOr: 3 7

5 bitInvert -6

254 radix: 16 16rFE

-5 // 4 -2

-5 quo: 4 -1

-5 intNegRem: 4 1

-5 rem: 4 -1

8 factorial 40320

1.17 LongInteger Class:

LongInteger Class is for 64-Bit integer representation.

Since there are four functions in utility.library that

produce 64-bit quantities, I felt that a separate Class

should make use of them.

signed32BitDivide is really the SDivMod32() function.

unsigned32BitDivide is really the UDivMod32() function.

signed64BitMultiply is really the SMult64() function.

unsigned64BitMultiply is really the UMult64() function.

NOTE: Primitives for addition & subtraction will be added later.

Methods are:

= aNumber

Return true if the receiver is equal to aNumber.

> aNumber

Return true if the receiver is greater than aNumber.

< aNumber

Return true if the receiver is less than aNumber.

asString

Return the receiver as a String Object.

asFloat

Return the receiver as a Float Object.

even

Return true if the receiver is an even number.

GeneralClasses 22 / 53

odd

Return true if the receiver is an odd number.

getLower32Bits

Return the lower 32 Bits of the receiver.

getUpper32Bits

Return the upper 32 Bits of the receiver.

signed32BitDivide: dividend by: divisor

Perform some LongInteger signed division.

dividend & divisor are 32-Bit Integers, upper32Bits is

really the Quotient & lower32Bits is really the Remainder.

unsigned32BitDivide: dividend by: divisor

Perform some LongInteger unsigned division.

dividend & divisor are 32-Bit Integers, upper32Bits is

really the Quotient & lower32Bits is really the Remainder.

signed64BitMultiply: arg1 times: arg2

Evaluate a signed 64-bit product. arg1 & arg2 are

NOT necessarily 64-bit Integers.

unsigned64BitMultiply: arg1 times: arg2

Evaluate an unsigned 64-bit product. arg1 & arg2 are

NOT necessarily 64-bit Integers.

quotientIs

Return the Quotient of a signed/unsigned32BitDivide: method.

remainderIs

Return the Remainder of a signed/unsigned32BitDivide: method.

1.18 Float Class:

The class Float provides protocol for objects with floating point values.

Responds To

= aNumber

Return true if the Receiver & the argument have the same value, false

otherwise.

< aNumber

Return true if the receiver is less than the argument.

> aNumber

Return true if the receiver is greater than the argument.

+ aNumber

Return the sum of the Receiver & the argument.

- aNumber

GeneralClasses 23 / 53

Return the difference of the Receiver & the argument.

* aNumber

Return the product of the Receiver & the argument.

/ aNumber

Return the quotient of the Receiver & the argument.

ˆ aNumber

Floating point exponentiation.

arcCos

Return a Radian representing the arcCos of the receiver.

arcSin

Return a Radian representing the arcSin of the receiver.

arcTan

Return a Radian representing the arcTan of the receiver.

asFloat

Return the receiver.

ceiling

Return the Integer ceiling of the receiver.

coerce: aNumber

Convert the argument into being type Float.

exp

Return e raised to the receiver value.

floor

Return the Integer floor of the receiver.

fractionPart

Return the fractional part of the receiver.

gamma

Return the value of the gamma function applied to the receiver value.

integerPart

Return the integer part of the receiver.

ln

Return the natural log of the receiver.

radix: aNumber

Return a string containing the printable representation of the receiver

in the given radix. Argument must be an Integer <= 36 and

>= 2.

rounded

Return the receiver rounded to the nearest integer.

sqrt

Return the square root of the receiver.

GeneralClasses 24 / 53

truncated

Return the receiver truncated to the nearest integer.

Examples: Printed result:

4.2 * 3 12.6

2.1 |ˆ 4 19.4481

2.1 raisedTo: 4 19.4481

0.5 arcSin 0.523599 radians

2.1 reciprocal 0.47619

4.3 sqrt 2.07364

1.19 Radian Class:

The class Radian is used to represent radians. Radians are a unit of

measurement, independent of other numbers. Only radians will respond

to the trigonometric functions such as sin & cos. Numbers can be

converted into radians by passing them the message radians. Similarly,

radians can be converted into numbers by sending them the message

asFloat. Notice that only a limited range of arithmetic operations

are permitted on Radians. Radians are normalized to be between 0 and

2 * pi .

Responds To

new: x

Create a new instance of Class Radian from x normalized to between

0 & 2 * pi.

< arg

Return true if the Receiver is less than the argument.

= arg

Return true if the argument is equal to the Receiver.

asFloat

Return the receiver as a floating point number.

cos

Return a floating point number representing the cosine of the receiver.

sin

Return a floating point number representing the sine of the receiver.

tan

Return a floating point number representing the tangent of the re-

ceiver.

printString

Display the Reciever as a String in the Status Window.

GeneralClasses 25 / 53

Examples: Printed result:

0.5236 radians sin 0.5

0.5236 radians cos 0.866025

0.5236 radians tan 0.577352

0.5 arcSin asFloat 0.523599

1.20 Point Class:

Points are used to represent pairs of quantities, such

as coordinate pairs.

Responds To

< aPoint

True if both values of the receiver are less than the corresponding

values in the argument.

<= aPoint

True if the first value is less than or equal to the corresponding

value in the argument, and the second value is less than the

corresponding value in the argument.

>= aPoint

True if both values of the receiver are greater than or equal to the

corresponding values in the argument.

* scale

Return a new point with coordinates multiplied by the argument value.

/ scale

Return a new point with coordinates divided by the argument value.

// scale

Return a new point with coordinates divided by the argument value.

+ delta

Return a new point with coordinates offset by the corresponding

values in the argument.

abs

Return a new point with coordinates having the absolute value of the

receiver.

dist: aPoint

Return the Euclidean distance between the receiver and the argument

point.

max: aPoint

The argument must be a Point. Return the lower right corner

of the rectangle defined by the receiver and the argument.

GeneralClasses 26 / 53

min: aPoint

The argument must be a Point. Return the upper left corner

of the rectangle defined by the receiver and the argument.

transpose

Return a new point with coordinates being the transpose of the re-

ceiver.

x

Return the first coordinate of the receiver.

x: aValue

Set the first coordinate of the receiver.

x: xValue y: yValue

Sets both coordinates of the receiver.

y

Return the second coordinate of the receiver.

y: aValue

Set the second coordinate of the receiver.

Examples: Printed result:

(10@12) < (11@14) True

(10@12) < (11@11) False

(10@12) max: (11@11) 11@12

(10@12) min: (11@11) 10@11

(10@12) dist: (11@14) 2.23607

(10@12) transpose 12@10

1.21 Random Class:

The class Random provides protocol for random number generation.

Sending the message next to an instance of Random results in a Float

between 0.0 and 1.0, randomly distributed. By default, the pseudo-random

sequence is the same for each object in class Random. This can be

altered using the message "randomize".

Responds To

new

Initialize the seed Object to 1.

between: low and: high

Return a random number uniformly distributed between the two arguments.

first

Return a random number between 0.0 and 1.0. This message merely

provides consistency with protocol for other sequences, such as

GeneralClasses 27 / 53

Arrays or Intervals.

next

Return a random number between 0.0 and 1.0.

next: n

Return an Array containing the next n random numbers, where

n is the argument value.

randInteger: limit

The argument must be an Integer. Return a random integer

between 1 and the value given.

randomize

Change the pseudo-random number generator seed by a time dependent

value.

Examples: Printed result:

i <- Random new

i next 0.759

i next 0.157

i next: 3 #(0.408 0.278 0.547)

i randInteger: 12 5

i between: 4 and: 17.5 10.0

1.22 Collection Class:

The class Collection provides protocol for groups of objects, such as

Arrays or Sets. The different forms of collections are distinguished

by several characteristics, among them whether the size of the collection

is fixed or unbounded, the presence or absence of an ordering, and their

insertion or access method. For example, an Array is a collection with

a fixed size and ordering, indexed by integer keys. A Dictionary, on

the other hand, has no fixed size or ordering, and can be indexed by

arbitrary elements. Nevertheless, Arrays and Dictionarys share many

features in common, such as their access method (at: and at:put:), and

the ability to respond to collect:, select:, and many other messages.

The table below lists some of the characteristics of several forms

of collections:

Name Creation Size Ordered? Insertion Access

Method fixed? method method

Bag/Set new no no add: includes:

GeneralClasses 28 / 53

Dictionary new no no at:put: at:

Interval n to: m yes yes none at:

List new no yes addFirst: first

addLast: last

Array new: yes yes at:put: at:

String new: yes yes at:put: at:

Responds To

addAll: aCollection

The argument must be a Collection. Add all the elements of

the argument collection to the receiver collection.

asArray

Return a new collection of type Array containing the

elements from the receiver collection. If the receiver was ordered,

the elements will be in the same order in the new collection, otherwise

the elements will be in an arbitrary order.

asBag

Return a new collection of type Bag containing the elements

from the receiver collection.

asList

Return a new collection of type List containing the

elements from the receiver collection. If the receiver was ordered,

the elements will be in the same order in the new collection, otherwise

the elements will be in an arbitrary order.

asSet

Return a new collection of type Set containing the elements

from the receiver collection.

asString

Return a new collection of type String containing the

elements from the receiver collection. The elements to be included

must all be of type Character. If the receiver was ordered,

the elements will be in the same order in the new collection, otherwise

the elements will be listed in an arbitrary order.

coerce: aCollection

The argument must be a Collection. Return a collection,

of the same type as the receiver, containing elements from the argument

collection. This message is redefined in most subclasses of

Collection.

collect: aBlock

GeneralClasses 29 / 53

The argument must be a one argument block. Return a new collection,

like the receiver, containing the result of evaluating the argument

block on each element of the receiver collection.

detect: aBlock

The argument must be a one argument block. Return the first element

in the receiver collection for which the argument block evaluates true.

Report an error and return "nil" if no such element exists. Note that

in unordered collections (such as Bags or Dictionarys)

the first element to be encountered that will satisfy the condition may

not be easily predictable.

detect: aBlock ifAbsent: exceptionBlock

Return the first element in the receiver collection for which the first

argument block evaluates true. Return the result of evaluating the

second argument if no such element exists.

includes: anObject

Return true if the receiver collection contains the argument.

inject: thisValue into: binaryBlock

The first argument must be a value, the second a two argument block.

The second argument is evaluated once for each element in the receiver

collection, passing as arguments the result of the previous evaluation

(starting with the first argument) and the element. The value returned

is the final value generated.

isEmpty

Return true if the receiver collection contains no elements.

occurrencesOf: anObject

Return the number of times the argument occurs in the receiver col-

lection.

remove: oldObject

Remove the argument from the receiver collection. Report an error if

the element is not contained in the receiver collection.

remove: oldObject ifAbsent: exceptionBlock

Remove the first argument from the receiver collection. Evaluate the

second argument if not present.

reject: aBlock

The argument must be a one argument block. Return a new collection

like the receiver containing all elements for which the argument block

returns false.

select: aBlock

The argument must be a one argument block. Return a new collection

GeneralClasses 30 / 53

like the receiver containing all elements for which the argument block

returns true.

size

Return the number of elements in the receiver collection.

shallowCopy

Return a copy of the receiver.

printString

print the Collection into the Status Window.

Examples: Printed result:

i <- ’abacadabra’

i size 10

i asArray #($a $b $a $c $a $d $a $b $r $a)

i asBag Bag ($a $a $a $a $a $r $b $b $c $d)

i asSet Set ($a $r $b $c $d)

i occurrencesOf: $a 5

i reject: [:x | x isVowel] bcdbr

1.23 Bags & Sets Classes:

Bags and Sets are each unordered collections of elements. Elements in

the collections do not have keys, but are added and removed directly.

The difference between a Bag and a Set is that each element can occur

any number of times in a Bag, whereas only one copy is inserted into

a Set.

Responds To

new

(Set only) Initialize a new instance of Set.

add: newElement

Add the indicated element to the receiver collection.

add: newObj withOccurences: anInteger

(Bag only) Add the indicated element to the

receiver Bag the given number of times.

first

Return the first element from the receiver collection. As the col-

lection is unordered, the first element depends upon certain values in

the internal representation, and is not guaranteed to be any specific

element in the collection.

next

Return the next element in the collection. In conjunction with

GeneralClasses 31 / 53

first, this can be used to access each element of the col-

lection in turn.

remove: oldElement ifAbsent: exceptionBlock

Remove the element from a Bag or Set or evaluate the exceptionBlock if

the oldElement is NOT present.

size

Return the number of Elements in the Set or Bag.

occurrencesOf: anElement

ˆ dict at: anElement ifAbsent: [0] "for a Bag."

ˆ (list includes: anElement) ifTrue: [1] ifFalse: [0] "for a Set."

Examples: Printed result:

i <- (1 to: 6) asBag Bag (1 2 3 4 5 6)

i size 6

i select: [:x | (x \ 2) strictlyPositive] Bag (1 3 5)

i collect: [:x | x \ 3] Bag (0 0 1 1 2 2)

j <- (i collect: [:x | x \ 3]) asSet Set (0 1 2)

j size 3

Note: Since Bags and Sets are unordered, there is no way to

establish a mapping between the elements of the Bag i in the

example above and the corresponding elements in the collection that

resulted from the message collect: [:x | x \ 3].

1.24 KeyedCollection Class:

The class KeyedCollection provides protocol for collections with keys,

such as Dictionarys and Arrays. Since each entry in the collection has

both a key and value, the method add: is no longer appropriate. Instead,

the method at:put:, which provides both a key and a value, must be used.

Responds To

add: anElement

Returns an error String (no key!).

addAll: aCollection

Add the elements of the argument to the Receiver.

asDictionary

Return a new collection of type Dictionary containing the

elements from the receiver collection.

at: key

Return the item in the receiver collection whose key matches the

argument. Produces and error message, and returns nil, if no

GeneralClasses 32 / 53

item is currently in the receiver collection under the given key.

at:ifAbsent:

Return the element stored in the dictionary under the key given by the

first argument. Return the result of evaluating the second argument if

no such element exists.

atAll: aCollection put: anObject

The first argument must be a collection containing keys valid for the

receiver. At each location given by a key in the first argument

place the second argument.

binaryDo: aBlock

The argument must be a two argument block. This message is similar to

do:, however both the key and the element value are passed as

arguments to the block.

includesKey: key

Return true if the indicated key is valid for the receiver collection.

indexOf: anElement

Return the key value of the first element in the receiver collection

matching the argument. Produces an error message if no such element

exists. Note that, as with the message detect:, in unordered

collections the first element may not be related in any way to the

order in which elements were placed into the collection, but is rather

implementation dependent.

indexOf: anElement ifAbsent: exceptionBlock

Return the key value of the first element in the receiver collection

matching the argument. Return the result of evaluating the second

argument if no such element exists.

select: aBlock

Select elements from the Collection based on their values.

keys

Return a Set containing the keys for the receiver collection.

keysDo: aBlock

The argument must be a one argument block. Similar to do:,

except that the values passed to the block are the keys of the receiver

collection.

keysSelect: aBlock

Similar to select, except that the selection is made on the

basis of keys instead of values.

remove: anElement

Returns an error String (no key!).

GeneralClasses 33 / 53

removeKey: key

Remove the object with the given key from the receiver collection.

Print an error message, and return nil, if no such object

exists. Return the value of the deleted item.

removeKey: key ifAbsent: exceptionBlock

Remove the object with the given key from the receiver collection.

Return the result of evaluating the second argument if no such

object exists.

values

Return a Bag containing the values from the receiver

collection.

Examples: Printed result:

i <- ’abacadabra’

i atAll: (1 to: 7 by: 2) put: $e ebecedebra

i indexOf: $r 9

i atAll: i keys put: $z zzzzzzzzzz

i keys Set (1 2 3 4 5 6 7 8 9 10)

i values Bag ($z $z $z $z $z $z $z $z $z $z)

#(how odd) asDictionary Dictionary (1 @ #how 2 @ odd)

1.25 Dictionary Class:

A Dictionary is an unordered collection of elements, as are Bags and

Sets. However, unlike these collections, elements inserted and removed

from a Dictionary must reference an explicit key. Both the key and

value portions of an element can be any object, although commonly the

keys are instances of Symbol or Number.

Responds To

new

Initialize a new Dictionary, 17 elements in size.

hashNumber: aKey

Compute the hash Number for the given Key.

getList: aKey

Return a List starting at aKey.

at: aKey put: anObject

Place the second argument into the receiver under the key given by

the first argument.

removeKey: aKey ifAbsent: exceptionBlock

Remove an entry from the Dictionary.

GeneralClasses 34 / 53

findAssociation: aKey inList: linkedList

If aKey is in the linkedList, return the item, else return nil.

currentKey

Return the key of the last element yielded in response to a first

or next Method.

first

Return the first element of the receiver collection. Return nil

if the receiver collection is empty.

next

Return the next element of the receiver collection, or nil if

no such element exists.

printString

Display the currentKey & associated value as a Point.

checkBucket: bucketNumber

Check to see if the bucketNumber is nil, if it is, return nil,

otherwise return the first element of the currentList.

Examples: Printed result:

i <- Dictionary new

i at: #abc put: #def

i at: #pqr put: #tus

i at: #xyz put: #wrt

i print Dictionary (#abc @ #def #pqr @ #tus #xyz @ #wrt)

i size 3

i at: #pqr #tus

i indexOf: #tus #pqr

i keys Set (#abc #pqr #xyz)

i values Bag (#wrt #def # tus)

1.26 AmigaTalk Class:

The class AmigaTalk provides protocol for the pseudo-variable

amigatalk or smalltalk (use amigatalk in new code).

Since it is a subclass of Dictionary, this variable can be used to store

information, and thus provide a means of communication between objects.

Other messages modify various parameters used by the AmigaTalk system.

This class is set up as a Singleton class, so that there is only one copy

of the global Dictionary.

Responds To

date

GeneralClasses 35 / 53

Return the current date and time as a string.

globalDictionary

Return the global Dictionary object.

addGlobal: newGlobal key: newKey

Add a new entry to the global Dictionary.

clearScreen

Erase any Curses or Plot3 windows.

debug: n

Change the AmigaTalk debug flag to n (0 = OFF or 1 = ON).

display

Set execution display to display the result of every expression typed,

but not for assignments. Note that the display behavior can also be

modified using the PRINTCMD=1 (formerly -d1) argument on the command line.

displayAssign

Set execution display to display the result of every expression typed,

including assignment statements. Equivalent to using the PRINTCMD=2

argument when first starting the AmigaTalk system.

doPrimitive: primNumber withArguments: argArray

Execute the indicated primitive with arguments given by the second

array. A few primitives (such as those dealing with process manage-

ment) cannot be executed in this manner.

noDisplay

Turn off execution display - no results will be displayed unless

explicitly requested by the user.

perform: aMessage withArguments: argArray

Send indicated message to the receiver, using the arguments given.

The first value in the argument array is taken to be the receiver of

the message. Unpredictable results if the number of arguments is not

appropriate for the given message.

sh: sysCommand

The argument, which must be a String, is executed as an AmigaDOS

command by the shell. The value returned is the termination status

number of the shell.

WARNING: Know what you’re doing when you use this method!

time: aBlock

The argument must be a block. The block is executed, and the number

of seconds elapsed during execution returned. Time is only accurate

to within about one second.

newIO: msgString title: title

GeneralClasses 36 / 53

Initialize the instance variables used for methods that allow the

User to use Amiga GUIs to get Strings, get Integers, display

Files, display Strings or to display Integers. This method is

equivalent to calling setIOMessage: followed by setIOTitle:

setIOMessage: newMessage

Change the display message for getString, getInteger, displayString &

displayInteger.

setIOTitle: newTitle

Change the display title for getString, getInteger, displayString &

displayInteger.

setIODirectory: newDirectory

Change the starting directory for getFileName. This method is

identical to setIOMessage, but it’s easier to see what your program is

doing if you call getFileName afterwards.

setIOScreenName: newScreenName

Change the Screen Name for getScreenModeID. This method is

identical to setIOMessage, but it’s easier to see what your program is

doing if you call getScreenModeID afterwards.

getString

Show the User a GUI that asks them to enter a String .

NOTE: newIO:title: has to be called before this method, in

order to have a Requester title & a Request to display!

getInteger

Show the User a GUI that asks them to enter an Integer .

NOTE: newIO:title: has to be called before this method!

getFileName

Show the User the ASL file Requester & ask them to enter a filename.

NOTE: newIO:title: has to be called before this method!

getScreenModeID

Show the User the ASL ScreenMode Requester & ask them to select a

screen mode.

NOTE: newIO:title: has to be called before this method!

displayFile: fileName

Display the contents of a file to the User, using the contents of the

FileDisplayer ToolType as the file display program.

NOTE: newIO:title: has to be called before this method!

displayString: string

Display a String to the User in a GUI.

NOTE: newIO:title: has to be called before this method!

GeneralClasses 37 / 53

displayInteger: integer

Display an Integer to the User in a GUI.

NOTE: newIO:title: has to be called before this method!

getProcessAddress: procName

Return an Integer representing the Address of the named Amiga-OS

Process.

getTaskAddress: taskName

Return an Integer representing the Address of the named Amiga-OS

Task.

getScreenAddress: screenName

Return an Integer representing the Address of the named Amiga-OS

Screen. screenName is the displayed title of the Screen .

getWindowAddress: windowName

Return an Integer representing the Address of the named Amiga-OS

Window. windowName is the displayed title of the Window .

showTaskProcessList

Display a Requester that lists all current System Tasks & Processes.

Returns an Integer representing the address of the last structure

selected in the ListView.

showScreenWindowList

Display a Requester that lists all current System Screens & Windows.

Returns an Integer representing the address of the last structure

selected in the ListView.

getTaskAddressList

Return an Array of Amiga-Task addresses.

getProcessAddressList

Return an Array of Amiga-Process addresses.

getScreenAddressList

Return an Array of Screen addresses.

getWindowAddressList

Return an Array of Window addresses.

displayProcessInfo: procAddress

Display a Requester that lists the System Process structure.

displayTaskInfo: taskAddress

Display a Requester that lists the System Task structure.

displayScreenInfo: screenAddress

Display a Requester that lists the System Screen structure.

displayWindowInfo: windowAddress

Display a Requester that lists the System Window structure.

GeneralClasses 38 / 53

Examples: Printed result:

atalk <- AmigaTalk new

atalk date Fri Apr 12 16:15:42 1985

atalk perform: #+ withArguments: #(2 5) 7

atalk doPrimitive: 10 withArguments: #(2 5) 7

1.27 SequenceableCollection Class:

The class SequenceableCollection contains protocol for collections

that have a definite sequential ordering and are indexed by integer

keys. Since there is a fixed order for elements, it is possible to

refer to the last element in a SequenceableCollection.

Responds To

, aCollection

Appends the argument collection to the receiver collection, returning

a new collection of the same type as the receiver.

copyFrom: start to: stop

Return a new collection, like the receiver, containing the designated

sub-portion of the receiver collection.

copyWith: newElement

Return a new collection, like the receiver, with the argument added

to the end.

copyWithout: oldElement

Return a new collection, like the receiver, with all occurrences of

the argument removed.

equals: aSubCollection startingAt: anIndex

The first argument must be a SequenceableCollection. Return

true if each element of the receiver collection is equal to the cor-

responding element in the argument offset by the amount given in the

second argument.

findFirst: aBlock

Find the key for the first element whose value satisfies the argument

block. Produce an error message if no such element exists.

findFirst: aBlock ifAbsent: exceptionBlock

Both arguments must be blocks. Find the key for the first element

whose value satisfies the first argument block. If no such element

exists return the value of the second argument.

findLast: aBlock

Find the key for the last element whose value satisfies the argument

GeneralClasses 39 / 53

block. Produce an error message if no such element exists.

findLast: aBlock ifAbsent: exceptionBlock

Both arguments must be blocks. Find the key for the last element

whose value satisfies the first argument block. If no such element

exists return the value of the second argument block.

firstKey

Return the first key valid for the receiver collection.

indexOfSubCollection: aSubColl startingAt: anIndex

Starting at the position given by the second argument, find the next

block of elements in the receiver collection which match the col-

lection given by the first argument, and return the index for the start

of that block. Produce an error message if no such position exists.

indexOfSubCollection: aSubColl startingAt: anIndex ifAbsent: exceptBlk

Similar to indexOfSubCollection:startingAt:, except that the

result of the exception block is produced if no position exists

matching the pattern.

last

Return the last element in the receiver collection.

lastKey

Return the last key valid for the receiver collection.

replaceFrom: start to: stop with: replacementCollection

Replace the elements in the receiver collection in the positions in-

dicated by the first two arguments with values taken from the col-

lection given by the third argument.

replaceFrom: first to: stop with: repColl startingAt: repStart

Replace the elements in the receiver collection in the positions in-

dicated by the first two arguments with values taken from the col-

lection given in the third argument, starting at the position given

by the fourth argument.

reversed

Return a collection, like the receiver, with elements reversed.

reverseDo: aBlock

Similar to do:, except that the items are presented in

reverse order.

select: aBlock

Return a new Collection like the receiver containing all elements for

which the argument Block returns true.

sort

Return a collection, like the receiver, with the elements sorted using

GeneralClasses 40 / 53

the comparison <=. Elements must be able to respond to the

binary message <=.

sort: sortBlock

The argument must be a two argument block which yields a boolean.

Return a collection, like the receiver, sorted using the argument to

compare elements for the purpose of ordering.

with: aSequencableCollection do: aBlock

The second argument must be a two argument block. Present one element

from the receiver collection and from the collection given by the first

argument in turn to the second argument block. An error message is

given if the collections do not have the same number of elements.

Examples: Printed result:

i <- ’abacadabra’

i copyFrom: 4 to: 8 cadab

i copyWith: $z abacadabraz

i copyWithout: $a bcdbr

i findFirst: [:x | x > $m] 9

i indexOfSubCollection: ’dab’ startingAt: 16

i reversed arbadacaba

i , i reversed abacadabraarbadacaba

i sort: [:x :y | x >= y] rdcbbaa

1.28 Interval Class:

The class Interval represents a sequence of numbers in an arithmetic

sequence, either ascending or descending. Instances of Interval are

created by Numbers in response to the message to: or to:by:. In

conjunction with the message do:, Intervals create a control structure

similar to do or for loops in Algol-like languages. For example:

(from: 1 to: 10 by: 2) do: [:x | x print]

will print the even numbers from 2 to 10. Although they are a col-

lection, Intervals cannot be added to. They can, however, be accessed

randomly using the message at:ifAbsent:.

Responds To

first

Produce the first element from the interval. Note that Intervals

also respond to the message at:ifAbsent:, which can be used

to produce elements in an arbitrary order.

last

GeneralClasses 41 / 53

Produce the last element from the interval. Note that Intervals

also respond to the message at:ifAbsent:, which can be used

to produce elements in an arbitrary order.

from: lowerBound to: upperBound by: stepSize

Initialize the upper and lower bounds and the step size for the

receiver. (This is also used internally by methods in Number to

create new Intervals).

next

Produce the next element from the Interval.

size

Return the number of elements that will be generated in producing

the interval.

inRange: value

Return true if value is within the Interval boundaries.

at: index ifAbsent: exceptionBlock

If the value lies within the Interval boundaries, return the value,

else evaluate the exceptionBlock.

printString

Display the Interval in the Status Window.

coerce: newCollection

Transform the Interval into an Array.

at: index put: value

This method is NOT valid for Intervals & returns an error String.

add: val

This method is NOT valid for Intervals & returns an error String.

removeKey: key ifAbsent: exceptionBlock

This method is NOT valid for Intervals & returns an error String.

deepCopy

Return a copy of the Interval.

shallowCopy

Same as deepCopy method.

Examples: Printed result:

(7 to: 13 by: 3) asArray #(7 10 13)

(7 to: 13 by: 3) at: 2 10

(1 to: 10) inject: 0 into: [:x :y | x + y] 55

(7 to: 13) copyFrom: 2 to: 5 #(8 9 10 11)

(3 to: 5) copyWith: 13 #(3 4 5 13)

(3 to: 5) copyWithout: 4 #(3 5)

(2 to: 4) equals: (1 to: 4) startingAt: 2 True

GeneralClasses 42 / 53

1.29 LinkedList Class:

Lists represent collections with a fixed order, but indefinite size.

No keys are used, and elements are added or removed from one end of

the other. Used in this way, Lists can perform as stacks or as

queues. The table below illustrates how stack and queue operations

can be implemented in terms of messages to instances of List.

stack operations queue operations

push addLast: add addLast:

pop removeLast first in queue first

top last remove first in queue removeFirst

test empty isEmpty test empty isEmpty

Responds To

add: anItem

Add the element to the beginning of the receiver collection. This is

the same as addFirst:.

addAllFirst: aCollection

The argument must be a SequenceableCollection. The

elements of the argument are added, in order, to the front of the

receiver collection.

addAllLast: aCollection

The argument must be a SequenceableCollection. The

elements of the argument are added, in order, to the end of the

receiver collection.

addFirst: anItem

The argument is added to the front of the receiver collection.

addLast: anItem

The argument is added to the back of the receiver collection.

remove: anItem

Remove the given element from the List.

remove: anItem ifAbsent: exceptionBlock

Remove an element from the List if it’s present. If it’s absent,

evaluate the exceptionBlock.

removeFirst

Remove the first element from the receiver collection, returning the

removed value.

removeLast

Remove the last element from the receiver collection, returning the

GeneralClasses 43 / 53

removed value.

first

Return the first element in the List.

next

Return the next element in the List.

current

Return the current element in the List.

last

Return the last element in the List.

isEmpty

Return true if the List is empty, false otherwise.

removeError

Return a string indicating that the User cannot remove from an empty

List.

coerce: aCollection

Transform aCollection into a List Object.

Examples: Printed result:

i <- List new

i addFirst: 2 / 3 List (0.6666)

i add: $A

i addAllLast: (12 to: 14 by: 2)

i print List (0.6666 $A 12 14)

i first 0.6666

i removeLast 14

i print List (0.6666 $A 12)

1.30 Semaphore Class:

Semaphores are used to synchronize concurrently running Processes.

Responds To

new

A Semaphore starts out with zero excess signals when created by

this method.

new: numberOfSignals

A Semaphore can be created with an arbitrary number of excess

signals with this method.

signal

If there is a process blocked on the semaphore it is scheduled for

execution, otherwise the number of excess signals is incremented by 1.

wait

If there are excess signals associated with the semaphore

the number of signals is decremented by one, otherwise

the current process is placed on the semaphore queue.

GeneralClasses 44 / 53

1.31 File Class:

A File is a type of collection where the elements of the collection are

stored on an external medium, typically a disk. For this reason,

although most operations on collections are defined for files, many can

be quite slow in execution. A file can be opened in one of three

modes: In character mode every read returns a single character from

the file. In integer mode every read returns a single word, as an

integer value. In string mode every read returns a single line, as a

String. For writing, character and string modes will write the string

representation of the argument, while integer mode must write only a

single integer.

Responds To

at: aPosition

Return the object stored at the indicated position. Position is given

as a character count from the start of the file.

at: aPosition put: anObject

Place the object at the indicated position in the file. Position is

given as a character count from the start of the file.

modeCharacter

Set the mode of the receiver file to character.

currentKey

Return the current position in the file, as a character count from

the start of the file.

modeInteger

Set the mode of the receiver file to integer.

open: aName

Open the indicated file for reading. The argument must be a String.

open: aName for: opType

The for: argument must be one of r, w or r+ (see

fopen(3) in the Unix programmers manual). Open the file

in the indicated mode.

read

Return the next object from the file.

size

Return the size of the file, in character counts.

modeString

Set the mode of the receiver file to string.

write: anObject

Write the argument into the file.

GeneralClasses 45 / 53

1.32 ArrayedCollection Class:

The class ArrayedCollection provides protocol for collections with a

fixed size and integer keys. Unlike other collections, which are

created using the message new, instances of ArrayedCollection must be

created using the one argument message new:. The argument given with

this message must be a positive integer, representing the size of the

collection to be created. In addition to the protocol shown, many of

the methods inherited from superclasses are redefined in this class.

Responds To

= anArray

The argument must also be an Array. Test whether the

receiver and the argument have equal elements listed in the same order.

at: key ifAbsent: exceptionBlock

Return the element stored with the given key. Return the result of

evaluating the second argument if the key is not valid for the

receiver collection.

coerce: aCollection

Transform aCollection to an ArrayedCollection.

copyFrom: start to: stop

Return a new portion of the ArrayedCollection.

currentKey

Return the current key value.

deepCopy

Return a copy of the ArrayedCollection. This method differs from

shallowCopy in that more memory space is allocated from the system.

do: aBlock

Perform aBlock for each element of the ArrayedCollection.

first

Return the first element of the ArrayedCollection.

firstKey

Return the index of the first element (which is always one).

lastKey

Return the index of the last element (which is equal to the size).

next

Return the next element of the ArrayedCollection.

padTo: length

Return an array like the received that is at least as long as the

argument value. Returns the receiver if it is already longer than the

GeneralClasses 46 / 53

argument.

shallowCopy

Return a copy of the ArrayedCollection.

Examples: Printed result:

’small’ = ’small’ True

’small’ = ’SMALL’ False

’small’ asArray #($s $m $a $l $l)

’small’ asArray = ’small’ True

#(1 2 3) padTo: 5 #(1 2 3 nil nil)

#(1 2 3) padTo: 2 #(1 2 3)

1.33 Array Class:

Instances of the class Array are perhaps the most commonly used data

structure in Smalltalk programs. Arrays are represented textually by

a pound sign preceding the list of array elements.

Responds To

at: index

Return the item stored in the position given by the argument. An error

message is produced, and nil returned, if the argument is not

a valid key.

at: index put: value

Store the second argument in the position given by the first argument.

An error message is produced, and nil returned, if the

argument is not a valid key.

grow: newElement

Return a new array one element larger than the receiver, with the

argument value attached to the end. This is a slightly more efficient

command than copyWith:, although the effect is the same.

printString

Display the elements of the Array in the Status Window.

size

Return the number of elements in the Array.

new: newSize

Return a new instance of Array of the given size.

Examples: Printed result:

i <- #(110 101 97)

i size 3

i <- i grow: 116 #(110 101 97 116)

i <- i collect: [:x | x asCharacter] #(#n #e #a #t)

i asString neat

GeneralClasses 47 / 53

1.34 ByteArray Class:

A ByteArray is a special form of array in which the elements must be

numbers in the range 0-255. Instances of ByteArray are given a very

compact encoding, and are used extensively internally in the AmigaTalk

system. A ByteArray can be represented textually by a pound sign

preceding the list of array elements surrounded by a pair of square

braces.

Responds To

at: index

Return the item stored in the position given by the argument. An

error message is produced, and nil returned, if the argument

is not a valid key.

at: index put: value

Store the second argument in the position given by the first argument.

An error message is produced, and nil returned, if the

argument is not a valid key.

printString

Display a representation of the array in the status window.

displayBytes: title

Display the array in a Requester with the given title. This method is

substantially faster than printString for large ByteArrays.

size

Return the number of elements in the array.

new: numElements

Make a new instance of the ByteArray Class as large as the given

size. The elements are initialized to zero.

Examples: Printed result:

i <- #[110 101 97]

i size 3

i <- i copyWith: 116 #[110 101 97 116]

i <- i asArray collect: [:x | x asCharacter] #(#n #e #a #t)

i asString neat

1.35 String Class:

Instances of the class String are similar to Arrays, except that the

individual elements must be Character. Strings are represented literally

by placing single quote marks around the characters making up the string.

GeneralClasses 48 / 53

Strings also differ from Arrays in that Strings possess an ordering,

given by the underlying ASCII sequence.

Responds To

, aString

Concatenates the argument to the receiver string, producing a new

String. If the argument is not a String it is first converted

using printString.

= aString

Return true if the Receiver is the same as the arugment.

< aString

The argument must be a String. Test if the receiver is

lexically less than the argument. For the purposes of

comparison, case differences are ignored.

<= aString

Test if the receiver is lexically less than or equal to the argument.

>= aString

Test if the receiver is lexically greater than or equal to the argu-

ment.

> aString

Test if the receiver is lexically greater than the argument.

cr

Return newline (ASCII value 10) as a String.

asSymbol

Return a Symbol with characters given by the receiver string.

at: aNumber

Return the character stored at the position given by the argument.

Produce an error message, and return nil, if the argument

does not represent a valid key.

at: aNumber put: aChar

Store the character given by second argument at the location given by

the first argument. Produce an error message, and return nil,

if either argument is invalid.

compareError

Return an error String about string comparison.

copyFrom: start length: len

Return a substring of the receiver. The substring is taken from the

indicated starting position in the receiver and extends for the given

length. Produce an error message, and return nil, if the

given positions are not legal.

GeneralClasses 49 / 53

copyFrom: start to: stop

Return a substring of the receiver. The substring is taken from the

indicated positions. Produce an error message, and return nil,

if the given positions are not legal.

deepCopy

Return a copy of the Receiver.

new: size

Make a new String filled with blanks of the size given.

NOTE: the maximum string length is silently limited to 512 characters.

printAt: aPoint

The argument must be a Point which describes a location on

the Curses screen. The string is printed at the specified

location.

printString

Print the Receiver (with surrounding quote marks) on the Status Window.

print

Print the Receiver (with NO surrounding quote marks) on the Status

Window.

size

Return the number of characters stored in the string.

sameAs: aString

Return true if the receiver and argument string match with

the exception of case differences. Note that the boolean

message =, inherited from ArrayedCollection, can be

used to see if two strings are the same including case differences.

Examples: Printed result:

’example’ at: 2 $x

’bead’ at: 1 put: $r read

’small’ > ’BIG’ True

’small’ sameAs: ’SMALL’ True

’tary’ sort arty

’Rats live on no evil Star’ reversed ratS live on no evil staR

1.36 Block Class:

Although it is easy for the programmer to think of blocks as a syntactic

construct, or a control structure, they are actually objects, and share

attributes of all other objects in the Smalltalk system, such as the

ability to respond to messages.

GeneralClasses 50 / 53

Responds To

fork

Start the block executing as a Process. The value nil is

immediately returned, and the Process created from the

block is scheduled to run in parallel with the current process.

forkWith: argumentArray

Similar to fork, except that the array is passed as

arguments to the receiver block prior to scheduling for execution.

newProcess

A new Process is created for the block, but is not scheduled

for execution.

newProcessWith: argumentArray

Similar to newProcess, except that the array is passed

as arguments to the receiver block prior to it being made into a

process.

value

Evaluates the receiver block. Produces an error message, and returns

nil, if the receiver block required arguments.

Return the value yielded by the block.

value: a

Evaluates the receiver block. Produces an error message, and returns

nil, if the receiver block did not require a single argument.

Return the value yielded by the block.

value: a value: b

Two argument block evaluation.

value:a value: b value: c

Three argument block evaluation.

value: a value: b value: c value: d

Four argument block evaluation.

value: a value: b value: c value: d value: e

Five argument block evaluation.

whileTrue: aBlock

The receiver block is repeatedly evaluated. While it evaluates to

true, the argument block is also evaluated. Return nil when

the receiver block no longer evaluates to true.

whileTrue

The receiver block is repeatedly evaluated until it returns a value

that is not true.

whileFalse: aBlock

GeneralClasses 51 / 53

The receiver block is repeatedly evaluated. While it evaluates to

false, the argument block is also evaluated. Return nil when

the receiver block no longer evaluates to false.

whileFalse

The receiver block is repeatedly evaluated until it returns a value

that is not false.

Examples: Printed result:

[’block indeed’] value block indeed

[:x :y | x + y + 3] value: 5 value: 7 15

1.37 Class Class:

The class Class provides protocol for manipulating class instances. An

instance of class Class is generated for each class in the AmigaTalk

system. New instances of this class are then formed by sending messages

to the class instance.

Responds To

edit

The user is placed into a editor editing the file from which the class

description was originally obtained. When the editor terminates, the

class description will be re-parsed and will override the previous

description. See also view.

list

Lists all subclasses of the given class recursively. In particular,

Object list will list the names of all the

classes in the system.

new

A new instance of the receiver class is returned. If the methods for

the receiver contain protocol for new, the new instance will

first be passed this message.

new: aValue

A new instance of the receiver class is returned. If the methods for

the receiver contain protocol for new:, the new instance will

first be passed this message.

respondsTo

List all the messages that the current class will respond to.

respondsTo: aSymbol

The argument must be a Symbol. Return true if the receiver

class, or any of its superclasses, contains a method for the indicated

GeneralClasses 52 / 53

message. Return false otherwise.

superClass

Return the superclass of the receiver class.

variables

Return an array containing the names of the instance variables used

in the receiver class.

view

Place the user into an editor viewing the class description from which

the class was created. Changes made to the file will not, however,

affect the current class representation.

getByteArray: methodString

Return a ByteArray that represents the given method in the Receiver.

Examples: Printed result:

Array new: 3 #(nil nil nil)

Bag respondsTo: #add: True

SequenceableCollection superClass KeyedCollection

1.38 Process Class:

Processes are created by the system, or by passing the message

newProcess or fork to a block; they cannot be created directly

by the user.

Responds To

block

The receiver process is marked as being blocked. This is

usually the result of a Semaphore wait. Blocked processes

are not executed.

resume

If the receiver process has been suspended, it is rescheduled

for execution.

suspend

If the receiver process is scheduled for execution, it is marked as

suspended. Suspended processes are not executed.

state

The current state of the receiver process is returned as a Symbol.

termErr: msgName

Print a String describing action taken on a terminated Process.

terminate

The receiver process is terminated. Unlike a blocked or

GeneralClasses 53 / 53

suspended process, a terminated process cannot be

restarted.

unblock

If the receiver process is currently blocked, it is scheduled for

execution.

yield

Returns nil. As a side effect, however, if there are

pending processes, the current process is placed back on the process

queue and another process started.

	GeneralClasses
	Descriptions of the Methods of the General classes:
	Pen Class:
	FormPen Class:
	SavePen Class:
	ShowPen Class:
	Form Class:
	Object Class:
	UndefinedObject Class:
	Symbol Class:
	Boolean Class:
	True Class:
	False Class:
	Magnitude Class:
	Char Class:
	Number Class:
	Integer Class:
	LongInteger Class:
	Float Class:
	Radian Class:
	Point Class:
	Random Class:
	Collection Class:
	Bags & Sets Classes:
	KeyedCollection Class:
	Dictionary Class:
	AmigaTalk Class:
	SequenceableCollection Class:
	Interval Class:
	LinkedList Class:
	Semaphore Class:
	File Class:
	ArrayedCollection Class:
	Array Class:
	ByteArray Class:
	String Class:
	Block Class:
	Class Class:
	Process Class:

